|
Tekis yaqinlashuvchi qatorlarning xossalari
|
bet | 6/10 | Sana | 15.06.2024 | Hajmi | 2,81 Mb. | | #263944 |
Bog'liq TAYYORTekis yaqinlashuvchi qatorlarning xossalari:
10. Agar (1) funksional qatorning har bir fn(x) hadi (n=1,2,…) X to`plamda uzluksiz bo`lib, bu funksional qator X to`plamda tekis yaqinlashuvchi bo`lib, u holda qatorning yig`indisi S(x) ham shu to`plamda uzluksiz bo`ladi.
20. Uzluksiz funksiyalardan tuzilgan tekis yaqinlashuvchi qatorni hadma-had integrallash mumkin, ya`ni
(6) qator yaqinlashuvchi bo`lib, uning yig`indisi esa (7) gat eng bo`ladi
30. Agar (1) qatorning har bir hadi [a,b] segmentda uzluksiz hosilaga ega bo`lib, bu hosilalardan tuzilgan funksional qator [a,b]da tekis yaqinlashuvchi bo`lsa, u holda funksional qator yig`indisi S(x) shu [a,b] segmentda S1(x) hosilaga ega va S1(x)= (8) bo`ladi.
Eslatma. Tekis yaqinlashuvchi qatorni ba`zi kuchaytirilgan qator ham deb ataydilar.
1.4. Darajali qatorlar.
Funksional qatorlarning muhim xususiy holi darajali qatorlardir.
Ta`rif. Quyidagi a0+a1(x-x0)+a2(x-x0)2+…+an(x-x0)n+… (1) yoki a0+a1x+a2x2+…+anxn+… (2) ko`rinishdagi funksional qator darajali qator deyiladi, bunda aK(K=0,1,2,…) o`zgarmas sonlar darajali qatorning koeffitsentlari deyiladi.
Teorema (Abel teoramasi).
1) Agar (2) darajali qator noldan farqli biror x0 qiymatda yaqinlashuvchi bo`lsa x ning tengsizlikni qanoatlanturuvchi har qanday qiymatlarida (2) qator absolyut yaqinlashuvchi bo`ladi.
2) Agar (2) qator x1 qiymatda uzoqlashuvchi bo`lsa, x ning tengsizlikni qanoatlantiruvchi har qanday qiymatlarida (2) qator uzoqlashuvchi bo`ladi.
Teorema. Darajali qatorning yaqinlashish sohasi markazi koordinatalar boshida bo`lgan intervaldan iboratdir.
Ta`rif. Darajali qatorning yaqinlashish intervali deb – Rdan R gacha bo`lgan shunday intervalda aytiladiki, bu interval ichida yotgan har qanday x nuqtada qator yaqinlashadi, shu bilan absolyut yaqinlashadi, uning tashqarisidagi x nuqtalarda esa qator uzoqlashadi (2-chizma). R soni darajali qatorning yaqinlashish radiusi deyiladi.
2-chizma.
Ba`zi qatorlarning yaqinlashish intervali nuqtaga aylanishini (R=0), ba`zilarida esa 0x o`qni butunlay o`z ichiga olishini (R= ) aytib o`tamiz.
Endi darajali qatorning yaqinlashish radiusini aniqlash usulini ko`rsatamiz.
darajali qator hadlarining absolyut qiymatlaridan tuzilgan qatorni qaraymiz: (3)
musbat hadli qatorning yaqinlashishini aniqlash uchun Dalamber alomatidan foydalanamiz. Faraz qilamiz
limit mavjud bo`lsin. U holda Damalber alomatiga asosan, agar , ya`ni bo`lsin, (3) qator yaqinlashuvchi va agar , ya`ni bo`lsin, uzoqlashuvchi bo`ladi.
Demak, (2) qator bo`lganda absolyut yaqinlashadi.
Agar bo`lsa, bo`ladi va (3) qator uzoqlashadi.
Yuqoridagiga asosan interval (2) darajali qatorning yaqinlashish intervali ekanligi chiqadi, ya`ni (4)
Yaqinlashish intervalini aniqlash uchun shunga o`xshash Koshining radikal alomatidan foydalanish mumkin, u vaqtda (5)
|
| |