• ЭЛЕКТРОДВИГАТЕЛЬНЫЕ ИСПОЛНИТЕЛЬНЫЕ
  • Однооборотные
  • Шаговые
  • O’zbeкiston respubliкasi oliy va o’rta mahsus ta’lim vazirligi andijon mashinasozliк instituti




    Download 15,26 Mb.
    bet75/129
    Sana04.12.2023
    Hajmi15,26 Mb.
    #111081
    1   ...   71   72   73   74   75   76   77   78   ...   129
    Bog'liq
    ATV fanidan O`QUV-USLUBIY MAJMUA 2015
    ISH REJA BETLIGI 2023-2024 @e baza ishreja, 7-sinf MUSIQA ochiq dars, Chirchiq davlat pedagogika universiteti pedagogika fakulteti um-fayllar.org (1), (4 sm) Burchak shtampli list ATJ, Komiljonov, 2-oraliq nazorat AQI(1), “ buxoro vohasi tuproqlarining sho’rlanish holati va ularni oldini
    3-rasm. Elektromagnitli relening sxemasi
    Cho’lg’amdagi 3 kuchlanish ta’sirida hosil bo’lgan magnit maydon xarakatlanuvchi yakorni 1 qo’zg’almas o’zakka 2 tortadi. Yakorning xarakati natijasida kontaktlar 5 ulanadi. Kuchlanish ajratilsa prujina 4 ta’sirida kontaktlar eski holatiga qaytadi. Qoldiq magnit oqimi ta’sirida yakor tez ajratish maqsadida uzoqqa nomagnitik materialdan bajarilgan shtift qotiriladi. Cho’lg’amdagi tokning ko’rinishi bo’yicha elektromagnit relelar o’zgarmas hamda o’zgaruvchan tok sanoat va yuqori chastotali relelarga ajratiladi. Relelarning to’g’ri va puxta ishi ularning tortish va mexanik tavsifnomalari o’zaro moslanganlikka bog’liq. Tortma tavsifnoma - bu cho’lg’amning elektromagnit kuchlanganligi va yakor bilan o’zak o’rtasidagi havo oralig’i oralaridagi bog’liqlik. Mexanik tavsifnoma esa prujinaning kuchlanganligi bilan yakorning so’rilish oralaridagi ochiqlilik relening ishga tushish sharti - uning tortish tavsifnomasi mexanik tavsifnomasi ustida bo’lishi kerak. Qo’yib yuborish sharti esa aksincha. tortish tavsifnomalari minimumdan maksimumgacha o’zgarilayotganda har hil amper - o’ramlar soni uchun gepper bolalar oilasidir. Relening qo’yib yuborishi e.k.yu. nuqtasida amalga oshadi. Tok oshishi bilan yakor 4 nuqtasida siljiydi lekin uzoqqa faqat 3 nuqtasida e.i.t. nuqtasida yopishadi.

    ЭЛЕКТРОДВИГАТЕЛЬНЫЕ ИСПОЛНИТЕЛЬНЫЕ


    МЕХАНИЗМЫ


    Виды электродвигательных ИМ. Электродвигательные ИМ (ЭИМ) получили наибольшее распространение в системах промышленной и сельскохозяйственной автоматики. Чаще всего в ЭИМ малой мощности (до 1000 Вт) применяются двухфазные асинхронные двигатели или двигатели постоянного тока, а в более мощных – трехфазные с короткозамкнутым или фазным ротором. Для уменьшения выбега двигателя и улучшения качества регулирования используется электрическое торможение. Конструктивно ЭИМ обычно выполняют с вращательным движением выходного вала и реже – с поступательным перемещением выходного штока.
    В зависимости от типа регулирующего органа различают однооборотные, многооборотные, шаговые и постоянно вращающиеся ЭИМ. Однооборотные - с углом поворота выходного вала до 360° применяют обычно в приводе таких регулирующих органов, как заслонки, краны, шибера и т.п. Многооборотные - используют для перемещения регулирующих органов в форме запорных вентилей, дросселей и задвижек. Выходной вал у них может совершать большое число оборотов и одновременно поступательно перемещать регулирующие органы. Шаговые – применяют для преобразования импульсных сигналов управления в фиксированный угол поворота, т.е. на каждый импульс механизм делает строго заданный угловой шаг. У постоянно вращающихся - крутящий момент от вала электродвигателя к регулирующему органу передается обычно через электромагнитную муфту. Направление и скорость вращения выходного вала муфты регулируют, изменяя ток возбуждения муфты.
    Основными техническими требованиями, предъявляемыми к ЭИМ, являются:
    - статическая устойчивость и линейность механических характеристик во всем диапазоне изменения управления;
    - линейная зависимость угловой скорости вращения ротора от величины управляющего сигнала во всем рабочем диапазоне;
    - высокое быстродействие по отношению к динамическим параметрам объекта управления;
    - большой пусковой момент;
    - малая мощность управления при значительной механической мощности на валу электродвигателя;
    - отсутствие самохода, т.е. малый остаточный вращающий момент при отсутствии сигнала управления;
    - высокая надежность;
    - малые габариты, размеры и масса;
    - высокие эксплуатационные свойства (КПД, ресурс работы).
    Электродвигатели постоянного тока. Двигатели постоянного тока ЭИМ наиболее полно удовлетворяют требованиям, предъявляемым к исполнительным элементам систем. Для стационарных объектов сельскохозяйственного производства эти ИМ применяются ограниченно, в основном в единичных случаях. В сельском хозяйстве, например, они широко используются только при управлении мобильными машинами и агрегатами.
    По способу возбуждения двигатели делятся на исполнительные двигатели с электромагнитным возбуждением и с возбуждением от постоянных магнитов. Двигатели с электромагнитным возбуждением выполняются с независимым, последовательным и смешанным возбуждением. Из всего многообразия исполнительных двигателей постоянного тока необходимо выделить бесколлекторные двигатели и двигатели с печатной обмоткой якоря. Управление двигателями постоянного тока может быть непрерывным и импульсным.
    Электродвигателем постоянного тока с независимым возбуждением можно управлять как со стороны якоря, так и со стороны обмотки возбуждения. При управлении электродвигателем со стороны якоря обмотка возбуждения запитывается неизменным напряжением постоянного тока и создает постоянный поток возбуждения. К якорной цепи электродвигателя подводится управляющее напряжение постоянного тока. При управлении электродвигателем со стороны обмотки возбуждения цепь якоря питается от сети неизменным напряжением постоянного тока, а управляющее напряжение, создающее регулируемый поток возбуждения, подается на обмотку возбуждения. При этом способе управления требуется меньшая мощность сигнала цепи управления, что позволяет использовать в качестве оконечных усилителей электронные, магнитные, полупроводниковые и другие маломощные усилители.
    К недостаткам управления электродвигателем со стороны обмотки возбуждения относятся малый диапазон изменения скорости, нелинейность статических характеристик, увеличение порядка уравнения движения электродвигателя и регулирование скорости только в сторону ее увеличения.
    В системах автоматического управления широкое распространение получил способ управления двигателем со стороны якоря, так как он позволяет получить широкий диапазон регулирования скорости, плавность регулирования, относительную линейность статических характеристик, большее быстродействие.
    К исполнительным двигателям с якорным управлением относятся двигатели с постоянными магнитами. Их статические характеристики аналогичны характеристикам двигателя с электромагнитным возбуждением при якорном управлении. Преимущество двигателей с постоянными магнитами состоит в том, что они не требуют источника питания обмотки возбуждения, имеют больший КПД и быстродействие, магнитный поток практически не зависит от температуры двигателя. Особо высокие показатели по быстродействию у двигателей с полым немагнитным якорем, в который впрессована обмотка управления. К недостаткам двигателей с постоянными магнитами относятся старение магнитов, используемых для полюсов. В настоящее время выпускается большая серия двигателей с постоянными магнитами ДПМ.
    Для увеличения быстродействия исполнительных двигателей применяют двигатели постоянного тока с плоским якорем (серия ПЯ), на котором обмотка нанесена печатным способом - рис.4.


    Рис. 4. Электродвигатель постоянного тока с печатной обмоткой якоря.


    Электрическая машина выполняется не с цилиндрическим воздушным зазором, а с плоским. Якорь 1 представляет собой тонкий диск, выполненный из немагнитного материала (текстолита, алюминия), с обеих сторон которого находятся проводники - обмотка 2. Отдельные проводники соединяются друг с другом через сквозные отверстия в диске 3. Электродвигатели с печатной обмоткой мощностью до 200 Вт не имеют специального коллектора. Роль коллектора выполняют активные части проводников, находящихся на одном торце диска. По поверхности торца диска скользят серебряно-графитовые щетки 4. Возбуждение двигателя осуществляется постоянным магнитом с полюсными наконечниками 5, имеющими форму кольцевых сегментов. Иногда оно может осуществляться и электромагнитами. Магнитный поток возбуждения проходит аксиально через два воздушных зазора, немагнитный диск с печатной обмоткой и замыкается по кольцам из магнитомягкой стали 6. При протекании тока по обмотке на валу двигателя создается вращающий момент, расположенный в плоскости диска якоря.


    Так как секции печатной обмотки одновитковые, а количество секций ограничено размерами диска, то электродвигатели с печатной обмоткой выполняют обычно на низкое напряжение сети. Для увеличения мощности электродвигателя в некоторых конструкциях применяют многодисковое исполнение якоря. Тогда электродвигатель представляет собой совокупность нескольких электрических машин, собранных в одной магнитной системе.
    Для обеспечения демпфирования якорь выполняют из немагнитного проводящего материала - алюминия. Вихревые токи в теле якоря образуют тормозной момент, пропорциональный скорости вращения. Между обмоткой и диском устанавливается почти полное потокосцепление, следовательно, индуктивность обмотки практически равна нулю и сопротивление является чисто активным.
    Электромеханическая постоянная времени за счет малого момента инерции дискового якоря снижается до 0,01...0,02 с, что является одним из основных преимуществ рассматриваемых двигателей. Кроме того, из-за незначительной индуктивности обмотки якоря коммутация не сопровождается искрением. Проводники печатной обмотки находятся в значительно лучших условиях охлаждения, чем проводники, уложенные в пазы обычного якоря. Это позволяет повысить плотность тока в них и управлять электродвигателем с помощью полупроводниковых усилителей. Механизированное изготовление обмоток якоря удешевляет электродвигатель.
    К недостаткам таких электродвигателей по сравнению с обычным двигателем следует отнести более низкий КПД из-за увеличения магнитного зазора машины, ограниченную долговечность вследствие износа контактирующей поверхности проводников обмотки якоря и критичность к перегрузкам по току вследствие ограничения допустимой плотности тока через печатные обмотки, что в ряде случаев ведет к усложнению схемы управления электродвигателями.
    Одним из существенных недостатков исполнительных двигателей постоянного тока является наличие скользящего контакта между щетками и коллектором, создающего искрение и радиопомехи. Надежность двигателей относительно низка из-за быстрого износа щеток, особенно при высоких скоростях вращения якоря. Существуют условия эксплуатации, когда коллекторные двигатели постоянного тока неприменимы. С целью устранения названных недостатков щеточно-коллекторный узел двигателя постоянного тока заменяют более надежной полупроводниковой схемой, управляемой сигналами датчика углового положения ротора. Бесколлекторный электродвигатель постоянного тока состоит (рис. 5.) из двигателя (Д), полупроводникового коммутатора (К) и датчика углового положения ротора (ДП).



    Рис. 5. Структурная и электрическая схемы бесколлекторного двигателя постоянного тока.
    В отличие от коллекторного двигателя постоянного тока бесконтактный двигатель имеет обмотку якоря на статоре I и систему возбуждения с постоянными магнитами на роторе II. Ротор выполняется, как правило, явно полюсным с одной парой полюсов из постоянного магнита. Обмотка состоит из трех секций, соединенных в звезду. И подключенных к транзисторному коммутатору. С осью ротора двигателя жестко связан якорь датчика углового положения III с тремя чувствительными элементами 1, 2, 3, расположенными друг относительно друга под углом 120 электрических градусов. Чувствительные элементы датчика управляют токами баз транзисторов VT1, VT2, VT3 полупроводникового коммутатора IV.
    В положении ротора, указанном на схеме, якорь датчика углового положения взаимодействует с чувствительным элементом 1, который поддерживает в открытом состоянии транзистор VT1. Ток, протекающий по статорной обмотке 1, взаимодействует с полем постоянного магнита, в результате чего к ротору прикладывается момент, направленный по часовой стрелке. Под воздействием этого момента ротор двигателя вращается в том же направлении, увлекая за собой якорь датчика. Обмотка 1 подключена к источнику питания U на интервале 120 электрических градусов, совпадающим с угловым размером сектора якоря датчика положения ротора. После поворота на 120 электрических градусов происходит отключение обмотки 1 и подключение обмотки 2, так как якорь датчика углового положения взаимодействует с чувствительным элементом 2, который открывает транзистор VT2 коммутатора. Таким образом, поворот ротора на 120 электрических градусов приводит к скачкообразному перемещению поля статора. Вращение ротора будет продолжаться потому, что происходит последовательное подключение обмоток статора электродвигателя к источнику питания, что обеспечивается благодаря воздействию на коммутатор сигнала обратной связи, снимаемого с датчика углового положения ротора.
    Тип обмотки статора электродвигателя и способ ее подключения к источнику электропитания определяют количество переключающих транзисторов коммутатора, а также число чувствительных элементов датчика ДП. Для уменьшения пульсаций момента на валу двигателя за один оборот количество обмоток должно быть большим. Чем больше число обмоток, тем лучше пусковые свойства и равномернее работа машины. Возрастание количества обмоток приводит к увеличению числа чувствительных элементов датчика положения и полупроводникового коммутатора. Поскольку элементы коммутатора имеют меньшую надежность по сравнению с другими частями электродвигателя, а масса и габариты коммутатора соизмеримы с массой и габаритами двигателя, то для электродвигателей небольшой мощности целесообразно применение двух - трех обмоток.
    В рассматриваемых двигателях возможна однополупериодная коммутация, при которой ток по обмотке протекает в одном направлении и двухполупериодная коммутация, когда ток по обмотке меняет направление, т.е. обмотка используется в течение полного оборота ротора.
    Двигатели с реверсивным питанием имеют преимущество перед аналогичными двигателями с нереверсивным питанием, обусловленное лучшим использованием меди обмоток и активных частей и более высоким КПД. Однако усложнение схемы коммутатора (количество элементов возрастает вдвое и конструкции датчика положения такого двигателя по сравнению с нереверсивным заставляют отдавать ему предпочтение только в тех случаях, когда предъявляются высокие требования к габаритам, массе, величине пульсаций момента и значению КПД двигателя. Для электродвигателей малой мощности более рациональна однополупериодная коммутация.
    Обмотка статора бесконтактного электродвигателя может выполняться либо замкнутой, либо разомкнутой. Замкнутая обмотка требует двухполупериодного питания, что усложняет коммутирующее устройство, но улучшает использование материала двигателя. В бесконтактном двигателе постоянного тока можно выделить две цепи, воздействующие на коммутатор. Первая цепь - источник питания транзисторов U, вторая - обратная связь, идущая с датчика положения ротора и воздействующая на базу того или иного транзистора. Отсюда вытекают два способа управления скоростью двигателя: путем изменения напряжения U источника питания и путем воздействия на сигнал обратной связи двигателя.
    Реверсирование двигателя может быть осуществлено полупроводниковым коммутатором путем взаимного переключения начала и концов обмоток либо путем переключения чувствительных элементов датчика положения или входных цепей транзисторов.
    Таким образом, наряду с основной функцией переключения обмоток по сигналам датчика положения полупроводниковый коммутатор регулирует скорость вращения ротора, осуществляет реверс, пуск и остановку двигателя. Цепи коммутации обмоток статора могут быть выполнены на транзисторных, тиристорных и магнитно-транзисторных ключах.
    Одним из основных узлов бесколлекторных двигателей постоянного тока является датчик углового положения ротора. В качестве таких датчиков могут применяться магниторезисторы, датчики Холла, радиоактивные элементы, емкостные, трансформаторные, индуктивные датчики, фоточувствительные устройства.
    Датчики положения ротора должны удовлетворять требованиям бесконтактности, высокой надежности, малой массы и габаритов, стабильности выходного сигнала, высокой чувствительности к угловому положению ротора, малому потреблению энергии и хорошему согласованию с входными цепями коммутатора.
    Применение бесконтактных коммутаторов обмоток двигателя постоянного тока приводит к более высокой стоимости и большим габаритам по сравнению с коллекторными двигателями той же мощности. Однако возрастание габаритов и стоимости оправдывается увеличением срока службы и надежности бесколлекторных двигателей постоянного тока.
    Шаговые исполнительные двигатели. шаговым двигателем называется электродвигатель с прерывистым вращением ротора под действием дискретного электрического сигнала, подаваемого на обмотки управления. в качестве шаговых двигателей получили широкое распространение многофазные синхронные двигатели с активным (возбуждением) и реактивным (невозбужденным) ротором. шаговые двигатели отличаются от обычного синхронного в основном формой напряжения, подводимого к фазным (управляющим) обмоткам. шаговые двигатели применяются с электронным коммутатором, который подает на обмотки управления прямоугольные импульсы. последовательность подключения обмоток и частота импульсов соответствует заданной команде. каждому импульсу управления соответствует поворот ротора на фиксированный угол, называемый шагом двигателя, величина которого строго определена его конструкцией и способом переключения обмоток. скорость вращения пропорциональна частоте, а суммарный угол поворота - числу импульсов управления. при изменении последовательности подключения к обмоткам управляющих импульсов по произвольному закону шаговый двигатель работает в режиме слежения, воспроизводя сложное движение с точность до одного шага. шаговый двигатель совместно с коммутатором можно отнести к системам частотного регулирования синхронного электродвигателя с возможностью изменения частоты до нуля. при снятии управляющих импульсов шаговый двигатель фиксирует конечные координаты углового перемещения с точностью до долей шага без применения датчиков обратной связи, что упрощает систему управления. в сельском хозяйстве эти двигатели им применяются в основном в составе сау технологическими производственными процессами, аналогичным промышленности (например, микроклимат, тепловые процессы и др.).
    Рассмотрим принцип действия и особенности основных физических процессов шаговых двигателей на примере двухфазной двухполюсной синхронной машины с активным ротором.
    При подаче постоянного напряжения указанного знака на фазу А (рис. 3.3) возникает намагничивающая сила статора FА, которая в результате взаимодействия с полем постоянного магнита ротора создает синхронизирующий момент. Под действием этого момента ротор займет положение, при котором его ось совпадет с осью фазы А. При отключении фазы А и подключении фазы В вектор намагничивающей силы статора повернется на 90° по часовой стрелке, возникнет синхронизирующий момент, под действием которого ротор вновь повернется на 90°. Для следующего поворота ротора на 90° по часовой стрелке необходимо подать на фазу А напряжение противоположного знака и т. д.

    Рис. 6. К принципу действия двухфазного шагового двигателя.


    При рассмотренном способе переключения обмоток, который можно представить в виде последовательности +А, +В, -А, -В, шаг двигателя равен 90°. Шаг двигателя можно уменьшить в два - раза, если переключение обмоток выполнить в другой последовательности: (+А), (+А, +В), (+В), (+В, -А), (-А), (-А, -В), (-В), (-В, +А), т. е. на некоторых шагах происходит подключение двух фаз одновременно. Такая коммутация фаз уменьшает шаг до 45°.


    Управление шаговым двигателем может быть однополярным или pазнополяpным, симметричным или несимметричным, потенциальным или импульсным. При однополярном управлении напряжение, подводимое к фазе, изменяется только по величине от нуля до +U. Разнополярное управление предполагает изменение напряжения от -U до +U. Управление называется симметричным, если для каждого устойчивого состояния возбуждается одинаковое количество фаз. Если возбуждается разное число обмоток, то управление будет несимметричным. В рассмотренном примере шагового двигателя управление является разнополярным симметричным при шаге 90° и несимметричным при шаге 45°.
    При потенциальном управлении напряжение на обмотках изменяется только в моменты поступления управляющих импульсов. В отсутствие сигнала управления обмотки находятся под постоянным напряжением, которое фиксирует положение ротора. При импульсном управлении обмотки статора находятся под напряжением только в моменты поворота ротора, а затем напряжение снимается и ротор фиксируется в определенном положении реактивным моментом.
    Способ управления шаговым двигателем оказывает влияние на сложность электронного коммутатора. Для простоты схемы электронного коммутатора наиболее удобной является потенциальная схема управления с симметричной однополярной коммутацией обмоток.
    Шаговый двигатель с электронным коммутатором характеризуется рядом величин, определяющих возможности его применения:

    • 1. Числом устойчивых электрических состояний n, которое кратно или равно числу управляющих обмоток m. Так n = m используется при однополярной коммутации и симметричном способе управления. n = 2*m при разнополярной коммутации с симметричным управлением или при однополярной коммутации для несимметричного способа управления. n = 4*m для несимметричной разнополярной коммутации. Разделение фазной обмотки на две секции с поочередным включением секций позволяет увеличить число устойчивых состояний. В многополюсной электрической машине число n возрастает пропорционально числу пар полюсов ротора.

    • 2. Механическим шагом двигателя - это углом между двумя устойчивыми соседними состояниями

     = 2 / (n p),
    где: n - число устойчивых состояний; р - число пар полюсов ротора. Этот же угол в электрических градусах будет равен
    э = p =2  / (np).

    • 3. Синхронизирующим моментом – зависимостью момента, развиваемого двигателем, от углового положения ротора. Для шаговых двигателей с симметричным ротором эта функция близка к синусоиде. Пусковым моментом является максимальный момент нагрузки, при котором двигатель на очередном цикле коммутации вращается без потери шага. Этот момент равен ординате точки пересечения кривых синхронизирующего момента для двух устойчивых соседних состояний. Интервал значений углового положения ротора, в пределах которого ротор возвращается в исходное положение, является зоной статической устойчивости двигателя. Эта зона равна (-)...() для двигателя с симметричным ротором.

    • 4. Частотой приемистости fn – максимальной частотой следования импульсов управления, при которой двигатель входит в синхронизм без потери шага. Частота приемистости пропорциональна динамической добротности шагового двигателя, определяемой отношением - Mп /J, и обратно пропорциональна шагу двигателя. При одной и той же добротности и величине шага частота приемистости растет с увеличением числа обмоток управления. Это объясняется тем, что при пуске ротор за первые тактовые импульсы может отрабатывать не полные шаги, а вращаться с некоторым запаздыванием относительно магнитодвижущей силы статора, оставаясь в пределах зоны устойчивости при каждом очередном переключении обмоток управления. Частота приемистости зависит от момента нагрузки на валу и электромагнитной постоянной времени обмоток управления.

    • 5. Электромагнитной постоянной времени, определяемой отношением индуктивного сопротивления обмотки управления к ее активному сопротивлению.

    • 6. Собственной частотой колебаний wо, которой называется угловая частота колебаний ротора двигателя около устойчивого положения при отсутствии момента нагрузки. Знание wо необходимо при определении частоты управляющих импульсов, при которой возможно явление резонанса. При резонансе амплитуда колебаний ротора резко возрастает, и двигатель выпадает из синхронизма.

    • 7. Механической характеристикой шагового двигателя, которой называется зависимость момента, развиваемого двигателем, от частоты управляющих импульсов. Механическая характеристика имеет падающий характер, так как с ростом частоты сказывается запаздывание в нарастании тока за счет индуктивности обмоток управления. На некоторой предельной частоте момент двигателя становится равным нулю.

    Наряду с магнитоэлектрическими шаговыми двигателями с активным ротором находят широкое применение индукторные и реактивные двигатели.
    Индукторные шаговые двигатели имеют ферромагнитный ротор из магнитомягкой электротехнической стали. На роторе находятся равномерно расположенные зубцы zp, на статоре - гребенчатые зубцовые зоны, смещенные относительно друг друга на угол 2/(mzp).
    Ротор возбуждается со стороны статора постоянной составляющей тока в фазах. Возбуждение ротора может осуществляться также постоянными магнитами статора или отдельной обмоткой возбуждения .
    Реактивные шаговые двигатели по конструкции аналогичны индукторным, однако они не имеют возбуждения ее стороны статора. Статор трехфазного реактивного шагового двигателя имеет шесть полюсных выступов с гребенчатыми зубцовыми зонами (рис. 7.). Обмотки управления могут иметь два независимых вывода или соединяются в звезду с выведенной общей точкой.
    Особенность реактивного шагового двигателя состоит в том, что потоки, образованные постоянными составляющими тока в обмотках управления, не замыкаются через воздушный зазор и не участвуют в электромеханическом преобразовании энергии. Трехфазные реактивные шаговые двигатели допускают как однополярную, так и разнополярную, симметричную и несимметричную коммутации.


    Download 15,26 Mb.
    1   ...   71   72   73   74   75   76   77   78   ...   129




    Download 15,26 Mb.

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    O’zbeкiston respubliкasi oliy va o’rta mahsus ta’lim vazirligi andijon mashinasozliк instituti

    Download 15,26 Mb.