|
Oʻzbekiston respublikasi oliy va oʻrta maxsus ta’lim vazirligi urganch davlat universitetiBog'liq Istedod ziyosi 2022 (2) 10 Informatika Savollar UZB, 2 sinf 2 chorak matem, 3- 4 - MAVZU (1), 88888888888
FUNKSIYALAR SINFIDA OPERATOR
M.X.Xusainova (UrDU Matematik tahlil kafedrasi magistranti)
( )
{
}
2
2
2
1
1
2
2
3
3
2
u z
a z
a z
a z
sh
=
+
+
∈ −
(
)(
)(
)
1
2
2
3
1
3
a
a
a
a
a
a
ℵ =
+
+
+
( )
{
}
2
2
2
1
1
2
2
3
3
2
u z
a z
a z
a z
sh
=
+
+
∈ −
funksiyalar sinfini kiritishdan
oldin
3
kompleks fazoda
2
sh
−
funksiyalarni aniqlab olamiz. Buning
uchun zarur bo‘lgan ayrim tushunchalarni keltirib o‘tamiz.
98
Dastlab,
∧
‒ tashqi ko‘paytma belgisini kiritamiz:
a)
( )
( )
( )
j
j
j
a x
dx
dx
a x
a x dx
∧
=
∧
=
;
b)
,
0
k
j
j
k
j
j
dx
dx
dx
dx
dx
dx
∧
= −
∧
⇒
∧
=
Ta’rif. Ushbu
1 2
1
2
1
2
...
0
...
...
p
p
p
j j
j
j
j
j
j
j
j
n
a
dx
dx
dx
ω
≤ < < < ≤
=
∧
∧ ∧
∑
ko‘rinishdagi ifodaga
p
-darajali differensial forma deyiladi va
deg
p
ω
=
kabi belgilanadi.
p
‒darajali differensial formalar to‘plami
( )
p
F
G
orqali
belgilanadi. Bunda
1 2
...
p
j j
j
a
‒
G
sohada aniqlangan funksiya
Ta’rif. Ushbu
1
2
p
j
j
j
i
dl
d l
ω
=
= ∧
∧
Ko‘rinishdagi differensial forma
(
)
,
p p
bidarajali bosh kuchli musbat
differensial forma deyiladi, bu yerda
1
1
...
n
j
j
j
n
l
a dz
a dz
=
+ +
−
,
1, 2,..., ,
1, 2,...,
jk
a
j
p k
n
∈
=
=
bazis bo‘yicha
(
)
1
,...,
n
dz
dz
ning chiziqli
kombinatsiya
Bunday formalarning ixtiyoriy chiziqli kombinatsiyasi kuchli mus-
bat differensial forma deb ataladi, ya’ni kuchli musbat differensial forma
bu
( )
1
2
k
s
p
j
s
j
j
s
i
z
dl
d l
ω
λ
=
=
∧
∧
∑
ko‘rinishdagi formadir, bu yerda
( )
s
z
λ
‒ qaralayotgan
n
G
⊂
sohadagi
manfiy bo‘lmagan funksiya.
Tayinlangan
n
G
⊂
soha uchun asosiy diffferensial formalar fazosi
qaraymiz:
( )
( )
( )
{
}
: supp
p
p
p
F
F
G
F
G
C
G
G
ω
ω
∞
=
=
∈
⊂⊂
Ta’rif.
p
F
fazodagi uzluksiz chiziqli (kompleks qiymatli)
T
funk-
sional
n
p
q
− =
darajali oqim deyiladi.
2-marta silliq
2
( )
u
C
D
∈
funksiya uchun uning ikkinchi tartibli dif-
ferensiali
2
,
2
c
j
k
j k
j k
j
k
j k
i
u
dd u
u dz
d z
bunda u
z
z
∂
=
∧
=
∂ ∂
∑
(1)
(tayinlangan
0
z
D
∈
nuqtada) Ermit kvadratik formasidan iborat bo‘ladi.
(
)
n
c
dd u
operator Monje-Ampere operatori deyiladi. Bunda
99
d
= ∂ + ∂
(
)
1
4
c
d
i
=
∂ −∂
1
1
1
1
1
.
4
n
n
k
k
k
k
k
k
n
n
c
k
k
k
k
k
k
u
u
du
u
u
dz
d z
z
z
u
u
d u
dz
d z
i
z
z
=
=
=
=
∂
∂
= ∂ + ∂ =
+
∂
∂
∂
∂
=
−
∂
∂
∑
∑
∑
∑
(2)
Endi
3
fazoda
2
sh
−
funksiya ta’rifini keltiramiz.
Ta’rif.
3
D
⊂
sohada
( )
1
( )
loc
u z
L
D
∈
funksiya berilgan bo‘lsin. Agar
u quyidagi shartlarni qanoatlantirsa,
( )
u z
funksiya
D
da yuqoridan ya-
rim uzluksiz, ya’ni
0
0
0
0
(
, )
lim ( )
lim sup
( )
( )
z
z
B z
u z
u z
u z
ε
ε
→
→
=
≤
;
2)
0
c
dd u
β
∧ ≥
(
( )
2
c
dd
z
β
=
) oqim
D
da musbat aniqlangan, ya’ni
(
)
( )
(
)
2
2
0
c
c
c
c
dd u
dd z
u dd z
dd
ω
ω
∧
=
∧
≥
∫
,
∀
( )
1,1
,
0
F
ω
ω
∈
≥
,
u holda berilgan finksiya
D
sohada
2
sh
−
funksiya deyiladi.
D
sohada
2
sh
−
bo‘lgan funksiyalar sinfi
2
( )
sh D
−
kabi belgilana-
di. Qulaylik uchun
u
≡ −∞
funksiya ham
2
( )
sh D
−
sinfga tegishli deb
qaraymiz.
2
sh
−
funksiyalarning xossalarini ko‘rib chiqamiz:
1)
( )
2
( ),
(
1, 2,...,
)
j
j
u z
sh D
a
R
j
N
+
∈ −
∈
=
⇒
1 1
2 2
( )
( ) ...
( )
2
( )
N
N
a u z
a u z
a u
z
sh D
+
+ +
∈ −
;
2)
( )
2
( ),
j
u z
sh D
∈ −
( )
( )
1
j
j
u
z
u
z
+
≥
,
(
)
1, 2,...
j
=
⇒
lim
( )
2
( )
j
j
u z
sh D
→∞
∈ −
;
3) Agar
( )
2
( ), (
1, 2,...)
j
u z
sh D
j
∈ −
=
,
( )
j
u z
( )
u z
bo‘lsa, u holda
( )
( )
2
u z
sh D
∈ −
;
4) agar
( ) 2
( )
u z
sh D
∈ −
va
0
z
D
∈
nuqta uchun
0
( ) sup ( )
z D
u z
u z
∈
=
bo‘l-sa,
u holda
( )
u z
const
≡
;
5) agar
( )
( )
2
u z
sh D
∈ −
bo‘lsa, u holda
( )
(
)
1/
j
j
u
z
u K
z
w
= ∗
−
o‘rama
ham
( )
2
sh D
−
sinfga tegishli bo‘ladi, bundan tashqari
j
→ ∞
da
( ) ( )
j
u
z
u z
↓
bo‘ladi;
100
6)
n
D
⊂
sohada yuqoridan yarim uzluksiz
u
funksiya
2
sh
−
bo‘li-
shi uchun ixtiyoriy
, dim
n
m
∏ ⊂
Π =
uchun
(
)
u
sh
D
∏
∈
∏
bo‘lishi za-
rur va yetarli.
Misol.
( )
2
2
2
1
2
3
3
2
4
u z
z
z
z
=
−
+
funksiyani
2
sh
−
bo‘lishga tekshi-
ring.
Yechish. Berilgan funksiyani ta’rifga ko‘ra,
2
sh
−
likka tekshira-
miz.
2
3
,
1
2
c
j
k
j k
j
k
i
u
dd u
dz
d z
z
z
=
∂
=
∧
∂ ∂
∑
(
)
1
1
2
2
3
3
2
i
dz
d z
dz
d z
dz
d z
β
=
∧
+
∧
+
∧
.
(
) (
)
1
1
1
1
1
1
6
6
3
,
2
u
x
y
x
y
z
∂
=
−
=
−
∂
(
)
(
)
2
2
2
2
2
1
4
4
2
,
2
u
x
y
x
y
z
∂
=
−
+
= −
−
∂
(
) (
)
3
3
3
3
3
1
8
8
4
,
2
u
x
y
x
y
z
∂
=
−
=
−
∂
(
)
2
1
1
1
3 3
3,
2
u
z z
∂
=
+
=
∂ ∂
(
)
2
2
2
1
2 2
2,
2
u
z
z
∂
=
− −
= −
∂ ∂
(
)
2
3
3
1
4
4
4,
2
u
z z
∂
=
+
=
∂ ∂
2
0, ,
1, 2,3.
j
k
u
j k
z z
∂
=
=
∂ ∂
(
)
1
1
2
2
3
3
3
2
4
2
c
i
dd u
dz
d z
dz
d z
dz
d z
=
∧
−
∧
+
∧
(
)
(
)
2
1
1
2
2
3
3
1
1
2
2
3
3
1
1
1
1
2
2
1
1
3
3
1
1
1
1
2
2
2
2
2
2
3
3
2
2
1
1
3
3
2
2
3
2
4
4
1
(3
4
2
4
3
2
4
3
2
c
i
dd u
dz
d z
dz
d z
dz
d z
dz
d z
dz
d z
dz
d z
dz
d z
dz
d z
dz
d z
dz
d z
dz
d z
dz
d z
dz
d z
dz
d z
dz
d z
dz
d z
dz
d z
dz
d z
dz
d z
dz
d z
dz
d z
dz
β
∧ =
∧
−
∧
+
∧
∧
∧
∧
+
∧
+
∧
= −
∧
∧
∧
−
−
∧
∧
∧
+
∧
∧
∧
+
+
∧
∧
∧
−
∧
∧
∧
+
+
∧
∧
∧
+
∧
∧
∧
−
−
∧
∧
3
3
3
3
3
3
1
1
2
2
2
2
3
3
1
1
3
3
4
)
1
[
2
4
7
]
d z
dz
d z
dz
d z
dz
d z
dz
d z
dz
d z
dz
d z
dz
d z
dz
d z
∧
+
∧
∧
∧
=
= −
∧
∧
∧
+
∧
∧
∧
+
+
∧
∧
∧
,
,
1, 2,3.
j
j
j
j
j
j
z
x
iy
z
x
iy
j
=
+
=
−
−
ekanligan foydalanamiz.
(
) (
) (
) (
)
2
,
1, 2,3.
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
dz
d z
d x
iy
d x
iy
dx
idy
dx
dy
idx
dy
idy
dx
idx
dy
j
∧
=
+
∧
−
=
+
∧
−
=
= −
∧
+
∧
= −
∧
=
101
1
1
2
2
2
2
3
3
1
1
3
3
2
7
c
dd u
dx
dy
dx
dy
dx
dy
dx
dy
dx
dy
dx
dy
β
∧ =
∧
∧
∧
+
∧
∧
∧
+
+
∧
∧
∧
Yuqoridagi tenglikdan
0
c
dd u
β
∧ ≥
ekanligini topamiz.
Demak, berilgan funksiya
2
sh
−
funksiya ekan.
|
| |