124
Abduxalilova Sh.Z. The simulations of the fractal figures with computer programs
THE SIMULATIONS OF THE FRACTAL FIGURES WITH COMPUTER PROGRAMS
Abduxalilova Shaxnoza Zafar qizi
Karshi state university, master's student shaxnozaabduxalilovazafar@gmail.com
Abstract.
In the present paper we investigate the simulations of fractal figures by
computer programming. In this paper we learn the developing computer program to obtain
fractal figures and apply them to some area of natural phenomena.
Key words.
geometric pattern, chaotic nonlinear dynamical systems, fractals, Isaac
Newton, Mandelbrot set.
Annotatsiya.
Ushbu maqolada biz kompyuter dasturlash orqali fraktal raqamlarning
simulyatsiyasini o‘rganamiz. Ushbu maqolada biz fraktal raqamlarni olish va ularni tabiiy
hodisalarning ayrim sohalarida qo‘llash uchun ishlab chiqilayotgan kompyuter dasturini
o‘rganamiz.
Kalit so‘zlar.
Geometrik shakl, xaotik chiziqli bo‘lmagan dinamik tizimlar, fraktallar,
Isaak Nyuton, Mandelbrot to‘plami.
Аннотация.
В настоящей статье мы исследуем моделирование фрактальных
фигур с помощью компьютерного программирования. В данной работе мы изучаем
развивающую компьютерную программу для получения фрактальных фигур и
применения их к некоторой области природных явлений.
Ключевые слова.
геометрический узор, хаотические нелинейные динамические
системы, фракталы, Исаак Ньютон, множество Мандельброта.
Introduction.
At the present time “chaotic nonlinear dynamical systems” is the most
popular branch of the mathematical modeling. Many of real life phenomena are nonlinear.
Fractals are strictly dependence with the nonlinear phenomena. There was scientific view
that every real phenomenon is regular or stable at the time of Isaac Newton. Later Poincare
[2] observed many of the real phenomena are not regular i.e. they are “chaotic”. At first
time fractal figures observed on the computer by Benoit Mandelbrot with several
programmers of at the company IBM in 1980. Later appears the set of Mandelbrot [4]
which is fractal, the most important tool of the sets of Julia [1] and strictly depends on the
irregular phenomenon. Let
c
x
f
x
n
n
,
1
is the mapping on
R
to itself.
Definition 1.
The set of points
c
x
f
x
x
n
n
n
,
|
1
is called the
orbit
of
0
x
for
c
x
f
n
,
mapping.
Definition 2.
If the set of points
c
x
f
x
x
n
n
n
,
|
1
if consist only one point then
0
x
is
called fixed point for
c
x
f
n
,
mapping.
Definition 3.
A complex geometric pattern exhibiting self-similarity in that small details
of its structure viewed at any scale repeat elements of the overall pattern.