Definition 4.
The filled Julia set
c
x
f
K
n
,
of a mapping
c
x
f
n
,
is
defined as the set of all points
R
x
, that have bounded orbits
with respect to mapping
c
x
f
n
,
.
,
|
,
n
as
c
x
f
x
c
x
f
K
n
n
Definition 5.
The
Julia set
is the common boundary of the filled
Julia set
.
,
,
.
c
x
f
K
c
x
f
J
n
n
Definition 6.
The
Mandelbrot set
c
x
f
M
n
,
for the mapping
c
x
f
n
,
is the
set of all points
c
on the parameter plane (or line), which the orbits
of the all critical points are bounded.
125
Definition 7.
If the orbit have following three properties then it is
chaotic
:
i.
Dense periodic points.
ii.
Transitivity.
iii.
Sensitive dependence of initial condition.
1.
Algorithms for developing computer programs
First algorithm is for filled Julia set on Euclidean plane for the mapping
q
y
x
g
y
p
y
x
f
x
F
n
n
n
n
n
n
,
,
,
,
:
1
1
where p and q are parameters
Algorithm JS. (For filled Julia set)
x=xmin-step
while x< xmax {
y=ymin-step
x=x+step
while y< ymax {
y=y+step
k=0
x1=x
y1=y
while (x1*x1+y1*y1k=k+1
xm=x1
x1=f(x1,y1,p)
y1=g(x1,y1,q) }
if k=N then Print(x,y) } }
Second algorithm is for Mandelbrot set on Euclidean plane for the mapping
q
y
x
g
y
p
y
x
f
x
F
n
n
n
n
n
n
,
,
,
,
:
1
1
where p and q are parameters.
Algorithm MS. (For Mandelbrot set)
x=xmin-step
while x< xmax {
y=ymin-step
x=x+step
while y< ymax {
y=y+step
k=0
x1=x
y1=y
while (x1*x1+y1*y1k=k+1
xm=x1
x1=f(x1,y1,p)
y1=g(x1,y1,q) }
if k=N then Print(p,q) } }
2.
Examples. Example 1.
In this example we show filled Julia sets for following
mappings on
2
R
to itself
.
2
:
1
2
2
1
q
y
x
y
p
y
x
x
F
n
n
n
n
n
n
(1)
126
In our program we chosen R=6, N=50 xmin=-2, xmax=2, ymin=-2, ymax=2, step=0,0001.
If p=q=0 then filled Julia set is unit circle center on origin Fig 1.
If p=0,25 and q=0 then filled Julia set is called the “cauliflower” Fig 2 which example of
the fractal.
If p=-0,75 and q=0 then we get Fig 3.
When p=-0,1 and q=0.8 then our fractal is called Doudy’s rabbit every where two ears.
by name of American mathematics Andrean Doudy Fig 4.
When p= 0,360284 and q= 0,100376 then filled Julia set is in Fig 5.
The sets of all parameters (p,q) which corresponding filled Julia sets are connected is
Mandelbrot set Fig 6.
127
Example 2.
In this example we show filled Julia sets for following mappings on
2
R
to
itself
.
:
2
1
2
1
q
x
y
p
y
x
F
n
n
n
n
(2)
In this case filled Julia sets are regular rectangle for (p,q) in M fig 7.
And Mandelbrot set for (2) mapping is in fig 8.
Theorem 1.
There are exist on boundary orbits of the mapping (1) that they are chaotic.
Theorem 2.
If p=q=-2 then the orbits of the mapping (2) are chaotic.
Reference
1. Ganikhodzhayev R.N., Narziyev N.B., Seytov Sh.J. Multi-dimensional case of the
problem of Von Neumann – Ulam // Uzbek Mathematical Journal, 2015. Vol. 3. Issue 1. – Р.
11-23 (01.00.00. № 6).
2. Ganikhodzhayev R.N., Seytov Sh.J., Obidjonov I.N., Sadullayev L. The sets of Julia and
Mandelbrot for multi-dimensional case of logistic mapping // Central asian problems of
modern science and education, 2020. Vol. 2020. Issue 4. – Р. 81-94 (ОАКнинг 30.06.2020
йилдаги №01-10/1103-сон хатига илова. № 8).
3. Ganikhodzhaev R.N., Seytov Sh.J. Coexistence chaotic behavior on the evolution of
populations of the biological systems modeling by three dimensional quadratic mappings
// Global and Stochastic Analysis, 2021. Vol. 8. – № 3. – P. 41-45 (№ 3 Scopus. IF= 0.248).
4. Ganikhodzhayev R.N., Seytov Sh.J. An analytical description of Mandelbrot and Julia
sets for some multi-dimensional cubic mappings / AIP Conference Proceedings, 2021. Vol.
2365. – P. 050006 (№ 3 Scopus. IF=0.189).
5. Ganikhodzhaev R.N., Seytov Sh.J. Mathematical modelling of the evolutions of the
populations in the connected two islands // Problems of computational and applied
mathematics, 2021. Vol. 1 (31). – P. 24-35 (01.00.00. № 9).
128
6. Husanova S. H. OLIY TAʼLIM MUASSASASI TALABALARINING DASTURLASH
KOʻNIKMALARINI SHAKLLANTIRISH (C++ DASTURLASH TILI MISOLIDA) //Экономика и
социум. – 2023. – №. 2 (105). – С. 1360-1366.
7. Seytov Sh.J. Dynamics of the populations depend on previous two steps // Ilm
sarchashmasi. – Toshkent, 2022. Vol. 1. – № 1. – P. 17-22 (01.00.00. № 12).
8. Seytov Sh.J., Ganikhodzhayev R.N. The method of graphical analysis for some two
dimensional dynamical systems // Bulletin of the Institute of Mathematics, 2020. Vol. 2. –
№ 4. – P. 22-26 (01.00.00. № 4).
Boqiyev A.M. Uzluksiz ta’lim tizimida o‘quvchilarning algoritmik kompetentsiyalarini
shakllantirishda dasturlash imkoniyatlaridan foydalanish
|