• Калит сўзлар
  • Qarshi davlat universiteti international scientific and practical conference on algorithms and current problems of programming




    Download 15,84 Mb.
    Pdf ko'rish
    bet113/551
    Sana15.05.2024
    Hajmi15,84 Mb.
    #234763
    1   ...   109   110   111   112   113   114   115   116   ...   551
    Bog'liq
    Asosiy oxirgi 17.05.2023 18.20

    Ключевые слова
    . Сложный объект, нейро-нечеткая модель, принятие решения, 
    вес, входящий сигнал, слой. 
    Аннотация
    . Ушбу мақолада мураккаб объектларни тезкор башоратловчи 
    бошқарув тизимларида қарорларни қабул қилишни қўллаб-қувватлашда адаптив 
    нейро-норавшан моделлар кўриб чиқилган ва уларнинг тузилмалари тахлил 
    қилинган. 
    Калит сўзлар
    . Мураккаб объект, нейро-норавшан модел, қарор қабул қилиш, 
    вазн, кирувчи сигнал, қатлам. 
    Let's turn to the development of algorithms for the operation of programmable logic 
    controllers that perform the functions of regulators in fast predictive control systems of 
    complex processes. The distributed adaptive neuro-fuzzy architecture [1; 2;4;5] in such 
    decision support systems is in the form of a six-layer neural structure, the structure of 
    which is presented in Figure 1. In this case, the incoming signals are "distributed" by 
    separate neuro-fuzzy structures, and a network of neuro-fuzzy structures is created, each 
    of which plays the role of a separate ostmodel, and the aggregate (generalized or global) 
    model is made up of a set of ostmodels. 
    The number of fuzzy production rules of the generalized model is significantly reduced 
    compared to the model. The number of fuzzy rules is defined by the expression. For the 
    considered model we have: 
    1
    2
    1
    2
    ...
    q
    p
    p
    p
    q
    N
    m
    m
    m



    . (1) 
    The layers of the model work as follows: Level 1: Neurons at this level receive incoming 
    signals and pass them on to the next level. 
    Level 2: A disambiguation operation is performed, which requires determining the type 
    and number of auxiliary functions to be used. In this case, the Gaussian function described 
    in formula (1) is used. 


    141 
    Figure 1. Structure of a distributed neuro-fuzzy model 
    Level 3: this layer is the generator of production rules, as fuzzy rules are generated here. 
    Level 4: The implication is made. 
    Level 5: Outputs of individual ostmodels are plotted against expressions where indicates 
    the number of ostmodels used. 
    Level 6: the result of the generalized model is obtained as a sum of individual 
    submodels. 
    The partially fuzzy neuro-fuzzy model of the input signals is expressed as a five-layer 
    structure with the Takagi-Sugeno logical inference mechanism. 
    In this case [3;6;7] some input signals are clear (not fuzzy) (Fig. 2), but with their actual 
    values weighted by the appropriate weight coefficient, they are directly entered into the 
    third layer, that is, directly into the next part of the Takagi-Sugeno functions. When using 
    the Takagi-Sugeno logical inference mechanism, the number of fuzzy rules involved in the 
    process model and the parameters to be determined when training them to the neural 
    network is reduced. For example, the model under consideration has 4 inputs, and the total 
    number of rules to be constructed is 9. 
    Figure 2. Structure of partially fuzzy neuro-fuzzy model of input signals 
    The total number of parameters to be defined in the training model is 64. In addition, the 
    considered model is close to the linear model in structure, so it can be called quasi-linear. It 
    also reduces the computational burden in the process of optimizing control decisions and 
    makes the considered model suitable for real-time operation. The main difficulty in using 
    the considered model is to determine which of the input signals should be fuzzy and which 
    should be directly included in the next part of the fuzzy rules (Fig. 3). 
    To find a suitable solution to this problem, three distributed neuro-fuzzy models, I-
    order, II-order and III-order models are considered and their modeling efficiency and 
    accuracy are investigated. In this case, the values of the output data of the object are 
    pressed and the values of the control effects are the I-order and III-order, also called 
    correlation model, in which the object has one control value and one output signal. is 
    directly included in the next part of the second-order fuzzy model, which is the inverse 
    version of models with. 


    142 
    It should be noted that only two of these three types of models considered were 
    developed under the assumption that a four-input model is being considered, which is 
    ambiguous. 
    Figure 3. Structure of a modified neuro-fuzzy model 
    Bodyansky E.V. and et. proposed the neuro-fuzzy neuron. In fact, it refers to a radial 
    basis neural network with a zero-order Takagi-Sugeno inference mechanism. In addition, a 
    modified neuro-fuzzy model is implemented in a multivariate version using the structure 
    shown in [8]. 
    The results of our research show that when using E.V.Bodyansky's modified neuro-fuzzy 
    model, it is necessary to minimize two instantaneous errors and update two weight 
    coefficients accordingly, but it is not necessary to study the effect of fuzzy set parameters. 

    Download 15,84 Mb.
    1   ...   109   110   111   112   113   114   115   116   ...   551




    Download 15,84 Mb.
    Pdf ko'rish

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Qarshi davlat universiteti international scientific and practical conference on algorithms and current problems of programming

    Download 15,84 Mb.
    Pdf ko'rish