Qarshi davlat universiteti international scientific and practical conference on algorithms and current problems of programming




Download 15,84 Mb.
Pdf ko'rish
bet173/551
Sana15.05.2024
Hajmi15,84 Mb.
#234763
1   ...   169   170   171   172   173   174   175   176   ...   551
Bog'liq
Asosiy oxirgi 17.05.2023 18.20

Kalit so‘zlar: 
Sun'iy intellekt, haydash sxemalarini optimallashtiring, tizim aniqlaydi, 
svetofor. 
Artificial intelligence (AI) is revolutionizing the automotive industry by enabling self-
driving cars and AI-assisted driving systems. One of the key benefits of integrating AI in the 
automotive sector is the ability to control the driver on the road. AI can monitor the 
driver's behavior, optimize driving patterns, and improve the overall driving experience. 
This article explores the use of AI in controlling the driver on the road and the advantages 
and limitations of this technology. Advantages of AI in Controlling Drivers on the Road: 
Safety: AI can monitor the driver's behavior and detect signs of drowsiness, distraction, 
or impairment. It can then take corrective actions such as alerting the driver or taking 
control of the vehicle to prevent accidents. AI can also improve road safety by detecting 
and responding to potential hazards, such as pedestrians or other vehicles. 
Efficiency: AI can optimize driving patterns, reduce fuel consumption, and emissions. It 
can also optimize traffic flow, reduce congestion, and travel times. 
Personalization: AI can learn the driver's preferences and provide personalized 
recommendations for music, temperature, and other settings, enhancing the overall driving 
experience. 
Limitations and Challenges: 
Data Accuracy: AI requires accurate and up-to-date data to make decisions. Inaccurate 
or outdated data can lead to incorrect decisions that could cause accidents or other issues. 


214 
Human Oversight: AI still requires human oversight to ensure that it is functioning 
correctly and making decisions that are in the best interest of the driver and other road 
users. 
Figure 1 presents a flow chart outlining the project's steps, which can be summarized as 
follows: input the road speed into the transmitter and send it to the car's receiver; the car 
receives and computes its own speed; the car's PIC compares the two speeds; if the car's 
speed is less than the road speed, the display shows "normal speed"; if the car's speed is 
higher than the road speed, the driver receives three alarms. If the driver does not reduce 
their speed, the PIC will issue a fine [1]. 
Ethical Considerations: AI must be programmed with ethical and moral considerations 
to ensure that it does not harm the driver or other road users. 
Figure 1. Flow chart diagram 
As previously discussed, the transmitting circuit generates a specific frequency based on 
the road speed value entered via the keypad. The receiver then receives this frequency, and 
we can determine the road speed using it. To convert the received frequency, we connect 
the receiver to an interfacing PIC, which acts as the decoder for this portion of the 
demodulation system, as depicted in the receiving circuit diagram. Subsequently, the PIC 
measures the frequency using an appropriate code and applies the following equation: 

(1) 
The equation for determining road speed is represented by "f" (frequency in Hz) and 
"sr" (road speed in km/h). This equation is programmed into the PIC's code. Upon 
executing the code, the road speed we transmitted is received, and the result is displayed 
on the LCD. Upon receiving the frequency, the PIC will calculate the road speed using the 
following process: 
One of the most promising applications of AI in controlling drivers on the road is in 
driver assistance systems. These systems use sensors and cameras to monitor the driver's 
behavior and provide feedback in real-time. For example, if the system detects that the 
driver is becoming drowsy or distracted, it can sound an alarm or vibrate the steering 
wheel to alert the driver. Similarly, if the system detects that the driver is swerving or 
braking too hard, it can take control of the vehicle and bring it to a safe stop. Another 
promising application of AI in controlling drivers on the road is in autonomous vehicles. 
They can detect and respond to traffic signals, other vehicles, and pedestrians, making 
driving safer and more efficient. AI-based systems can also be used for traffic management, 
helping to reduce congestion and improve traffic flow. For example, traffic lights can be 
equipped with sensors and cameras that monitor traffic patterns in real-time. Machine 
learning algorithms can then analyze this data to optimize the timing of the traffic lights, 
reducing wait times and improving traffic flow. Despite the potential of AI-based systems 
for controlling drivers on the road, there are also some challenges that need to be 


215 
addressed. One of the main challenges is ensuring the safety and reliability of these 
systems. 
AI-based systems must be thoroughly tested and validated before they can be deployed 
on a large scale. There is also a need for regulations and standards to ensure that these 
systems are designed and implemented in a safe and responsible manner. 

Download 15,84 Mb.
1   ...   169   170   171   172   173   174   175   176   ...   551




Download 15,84 Mb.
Pdf ko'rish

Bosh sahifa
Aloqalar

    Bosh sahifa



Qarshi davlat universiteti international scientific and practical conference on algorithms and current problems of programming

Download 15,84 Mb.
Pdf ko'rish