|
Telekommunikatsiya texnologiyalari “fakulteti raqamli iqtisodiyot yo’nalishi
|
bet | 11/13 | Sana | 23.05.2024 | Hajmi | 484,16 Kb. | | #251716 |
Bog'liq ehtimollik mustaqil ish baxriddinov 8.Bog’liqsiz hodisalar.
Agar bir necha tajribalar o‘tkazilayotganida, har bir tajribada biror A hodisaning ro‘y berish ehtimolligi boshqa tajriba natijalariga bog‘liq bo‘lmasa, bunday tajribalar bog‘liqsiz tajribalar deyiladi.
n ta bog‘liqsiz tagribalar o‘tkazilayotgan bo‘lsin. Har bir tajribada A hodisaning ro‘y berish ehtimolligi va ro‘y bermasligi ehtimolligi bo‘lsin.
Masalan, 1) nishonga qarata o‘q uzish tajribasini ko‘raylik. Bu yerda A={o‘q nishonga tegdi}-muvaffaqqiyat va ={o‘q nishonga tegmadi}-muvaffaqqiyatsizlik; 2) n ta mahsulotni sifatsizlikka tekshirilayotganda A={mahsulot sifatli}-muvaffaqqiyat va ={mahsulot sifatsiz}-muvaffaqqiyatsizlik bo‘ladi.
Bu kabi tajribalarda elementar hodisalar fazosi faqat ikki elementdan iborat bo‘ladi: , bu erda -A hodisa ro‘y bermasligini, -A hodisa ro‘y berishini bildiradi. Bu hodisalarning ehtimolliklari mos ravishda p va q (p+q=1) lar orqali belgilanadi.
Agar n ta tajriba o‘tkazilayotgan bo‘lsa, u holda elementar hodisalar fazosining elementar hodisalari soni 2n ga teng bo‘ladi. Masalan, n=3 da , ya’ni to‘plam 23=8 ta elementar hodisadan iborat. Har bir hodisaning ehtimolligini ko‘paytirish teoremasiga ko‘ra hisoblash mumkin:
n ta bog‘liqsiz tajribada A hodisa m marta ro‘y berish ehtimolligini hisoblaylik:
Har bir qo‘shiluvchi ko‘paytirish teoremasiga ko‘ra ga teng. Demak,
Agar n ta bo‘g‘liqsiz tajribaning har birida A hodisaning ro‘y berish ehtimolligi p ga, ro‘y bermasligi q ga teng bo‘lsa, u holda A hodisaning m marta ro‘y berish ehtimolligi quyidagi ifodaga teng bo‘ladi:
. (1.13.1)
(1.13.1) formula Bernulli formulasi deyiladi. ehtimolliklar uchun tenglik o‘rinlidir. Haqiqatan ham,
Nyuton binomi formulasida deb olsak,
, ya’ni
bo‘ladi.
(1.13.1) ehtimolliklar xossalari:
1. .
2. Agar bo‘lsa, .
3. n ta bog‘liqsiz tajribada A hodisaning kamida 1 marta ro‘y berishi ehtimolligi bo‘ladi.
Chunki, .
4. Agar ehtimollikning eng katta qiymati bo‘lsa, u holda quyidagicha aniqlanadi: , -eng ehtimolli son deyiladi va
a) agar np-q kasr son bo‘lsa, u holda yagonadir;
b) agar np-q butun son bo‘lsa, u holda ikkita bo‘ladi.
|
| |