1-mavzu: Funksiya tushunchasi. Ketma-ketlik limiti. Dars rejasi




Download 30,89 Kb.
bet4/10
Sana11.12.2023
Hajmi30,89 Kb.
#115938
1   2   3   4   5   6   7   8   9   10
Bog'liq
1-mavzu Funksiya tushunchasi. Ketma-ketlik limiti. Dars rejasi-fayllar.org

1-eslatma. Yuqoridagi ta’rifda xmr (xm>xr) tengsizlik o‘rnida xm xr (xm xr) tengsizlik ishlatilsa, ketma-ketlik keng ma’noda o‘suvchi yoki kamaymovchi (keng ma’noda kamayuvchi yoki o‘smovchi) deyiladi.

2-eslatma. O‘suvchi (kamaymovchi ) ketma-ketlik uchun

xn-xn+1<0 (xn-xn+10) tengsizlik, kamayuvchi (o‘smovchi) ketma-ketlik uchun esa, xn-xn+1>0 (xn-xn+10) tengsizlik n bo‘lganda o‘rinli bo‘lishi zarur va etarli shart ekanligini ko‘rsatish qiyin emas.



Ta’rif. O‘suvchi va kamayuvchi (kamaymovchi va o‘smovchi) ketma-ketliklarni monoton (keng ma’noda monoton) ketma-ketliklar deb ataladi.

Yuqorida keltirilgan (1a) va (1b) lar o‘suvchi, (1c) esa kamayuvchi ketma-ketlikga misollardir, ular (uchchalasi ham) monotondir.
Haqiqatdan ham, (1a) uchun xn=2n bo‘lganidan xn+1=2(n+1)=2n+2 , ya’ni xn-xn+1=-2<0 ekanligi kelib chiqadi. (1b) uchun ham shunga o‘xshash holat kuzatiladi, agar (1c) ni olsak, unda

xn= bo‘lib, ,


demak, (9.1.1a) va (9.1.1b) lar o‘suvchi, (9.1.1c) esa kamayuvchi ketma-ketlik ekan.


Ta’rif. Agar berilgan {xn} sonli ketma-ketlik uchun shunday M (m) o‘zgarmas son mavjud bo‘lsaki, uning har bir hadi shu sondan katta (kichik) bo‘lmasa, ya’ni n, xnM (xn m) bo‘lsa, bu sonli ketma-ketlik yuqoridan (quyidan) chegaralangan deyiladi, M (m) son uning yuqori (quyi) chegarasi deb ataladi.

Ta’rif. Ham quyidan ham yuqoridan chegaralangan ketma-ketlik chegaralangan ketma-ketlik deyiladi.

Masalan, (1a) va (1b) lar quyidan chegaralangan, ammo, yuqoridan chegaralanmagan ketma-ketliklar ekanligini ko‘rish qiyin emas. Agar (1c) ni olsak, u ham yuqoridan ham quyidan chegaralangandir, ya’ni uning ixtiyoriy hadi uchun
o‘rinlidir. Demak, (1c) chegaralangan ketma-ketlikdir.



Download 30,89 Kb.
1   2   3   4   5   6   7   8   9   10




Download 30,89 Kb.

Bosh sahifa
Aloqalar

    Bosh sahifa



1-mavzu: Funksiya tushunchasi. Ketma-ketlik limiti. Dars rejasi

Download 30,89 Kb.