Elektrodinamika bsc ci laTeX




Download 3,04 Mb.
bet25/26
Sana29.12.2019
Hajmi3,04 Mb.
#6280
1   ...   18   19   20   21   22   23   24   25   26
9. 9 Geometriai optika


A geometriai optika a fényterjedést sugarakkal írja le. Vizsgáljuk az elektromágneses hullám terjedését izotrop inhomogén szigetelő közegben. A hullámegyenlet 0 alakú, itt (r) a helyfüggő terjedési sebesség, az E elektromos térerősség vagy a B mágnese indukció valamelyik derékszögű komponense. Az egyenlet időben periodikus megoldása , a



egyenletnek tesz eleget. Keressük ennek megoldását (r)) alakban. Az (r) neve eikonál (fényút), az állandó felület normálvektora jelöli ki a fényterjedés irányát az adott pontban. Síkhullámban állandó terjedési sebesség esetén nr. Ha (r) lassan változik, és közel lineáris r-ben, akkor közel síkhullám. A törésmutató definíciója , ahol a vákuumbeli hullámszám.

A 0 ( határesetben az egyenlet a

közelítő alakban írható, ez az eikonál-egyenlet. 0 (elterjedt) pongyola megfogalmazás, adott hullámhosszú fény terjedése során természetesen állandó, azt kell megmondanunk, hogy mihez képest kicsi. A közelítés során, amelyet itt nem részletezünk, bizonyos tagokat elhanyagolunk, az elhanyagolás feltételei a következőek:



1. , ahol a közegbeli hullámhossz.

2. Az állandó egyenlet által meghatározott hullámfelület görbületi sugara .

3. A hullámfront lineáris méretei (pl. gömbhullám esetén a gömb sugara) .

Az első feltétel nem érvényes pl. fény és árnyék határán (itt az intenzitás gyorsan változhat, grad nagy lehet), a második és harmadik feltétel nem érvényes fényforrások, fókuszok közelében.

Izotrop közegben a k hullámszámvektor a fénysugarak irányába mutat, merőleges az állandó felületekre. Ekkor az eikonál-egyenletből gyökvonással azt kapjuk, hogy .

Tetszőleges zárt görbére igaz, hogy .



Alkalmazzuk ezt egy olyan zárt görbére, amelynek AB szakasza a fénysugár egy darabja, B-ből A-ba pedig valamilyen tetszőleges görbén jutunk vissza.



A skalárszorzat tulajdonsága miatt igaz, hogy , ezért





az utolsó két integrálban a integrálási út a megfordítottja. Az első és utolsó integrál összehasonlítása szolgáltatja a Fermat-elvet: az optikai úthossznak nevezett integrál a fénysugár mentén minimális. Felhasználva, hogy , arra jutunk, hogy

Download 3,04 Mb.
1   ...   18   19   20   21   22   23   24   25   26




Download 3,04 Mb.