• Ключевые слова
  • Annotatsiya
  • Kalit so‘zlar
  • Qarshi davlat universiteti international scientific and practical conference on algorithms and current problems of programming




    Download 15,84 Mb.
    Pdf ko'rish
    bet473/551
    Sana15.05.2024
    Hajmi15,84 Mb.
    #234763
    1   ...   469   470   471   472   473   474   475   476   ...   551
    Bog'liq
    Asosiy oxirgi 17.05.2023 18.20

    Аннотация
    В данной статье исследуются теоретические основы обучения 
    вычислительному мышлению (CТ) студентов вузов. Компьютерная томография 
    является важным навыком для учащихся в современную цифровую эпоху, поскольку 
    дает им возможность анализировать и решать проблемы в самых разных областях. 
    Ключевые слова:
    вычислительное мышление, педагогические стратегии, модели 
    и фреймворки, алгоритмы, структуры данных, абстракция, каркасы, совместное 
    обучение, обучение на основе проектов. 
    Annotatsiya: 
    Ushbu maqola oliy o‘quv yurtlari talabalariga hisoblash tafakkurini (CT) 
    o‘rgatishning nazariy asoslarini o‘rganadi. CT talabalar uchun bugungi raqamli asrda ega 
    bo‘lishi kerak bo‘lgan muhim ko‘nikma hisoblanadi, chunki u ularga turli sohalardagi 
    muammolarni tahlil qilish va hal qilish qobiliyatini beradi. 
    Kalit so‘zlar: 
    hisoblash fikrlash, pedagogik strategiyalar, modellar va ramkalar, 
    algoritmlar, ma'lumotlar tuzilmalari, abstraktsiya, hamkorlikda o‘rganish, loyiha asosida 
    o‘rganish. 
    Computational thinking (CT) has emerged as a crucial skill in the digital age, as it equips 
    individuals with the ability to analyze and solve problems in various domains. CT is the 
    thought process involved in formulating and solving problems so that the solution can be 
    represented in a form that can be executed by a computer. CT is not just about 
    programming, but rather about a set of cognitive skills that enable individuals to 
    understand how computers can help solve problems in their domains. CT is an essential 
    skill for students in higher education institutions, as it provides them with the ability to 
    analyze complex problems and develop efficient solutions using technology. 
    Teaching CT to students in higher education institutions is a complex task that requires 
    a sound theoretical foundation and effective pedagogical strategies. In recent years, there 
    has been an increasing emphasis on CT education in higher education institutions, as 
    employers recognize the importance of this skill in the workplace. CT education can be 
    viewed as a continuum, ranging from basic concepts of programming to more advanced 
    skills, such as algorithmic thinking and data analysis. The goal of CT education is to develop 
    students' abilities to think computationally, which involves problem-solving, abstraction, 
    and algorithmic thinking. 
    Theoretical Foundations of Computational Thinking
    . CT is a multifaceted concept that 
    encompasses several key components, such as algorithms, data structures, and abstraction. 
    Algorithms are a set of instructions for solving a problem, while data structures are ways of 
    organizing and storing data so that it can be efficiently accessed and manipulated. 
    Abstraction involves simplifying complex problems by focusing on the essential details and 
    ignoring irrelevant information. 
    Algorithms are a fundamental concept in CT education, as they provide a structured 
    approach to problem-solving. Algorithms can be represented using flowcharts, 
    pseudocode, or programming languages, and they can be applied to a variety of domains, 
    such as mathematics, science, and engineering. By teaching students how to design and 
    implement algorithms, educators can help them develop their problem-solving skills and 
    enable them to tackle complex problems in their respective domains. 
    Abstraction is a key concept in CT education, as it involves simplifying complex 
    problems by focusing on the essential details and ignoring irrelevant information. By 
    teaching students how to abstract problems, educators can help them develop their critical 
    thinking skills and enable them to tackle complex problems in a structured and organized 
    manner. 
    Models and Frameworks for Teaching Computational Thinking
    . There are several models 
    and frameworks for teaching CT, each with its own strengths and weaknesses. One such 
    framework is the Computational Thinking for Everyone (CT4E) framework, which 


    577 
    emphasizes the importance of problem-solving, abstraction, and algorithmic thinking in CT 
    education. The CT4E framework is based on the following five components: problem 
    decomposition, pattern recognition, abstraction, algorithms, and evaluation. By focusing on 
    these components, educators can help students develop their CT skills in a structured and 
    organized manner[1]. 
    Another framework for teaching CT is the Computational Thinking Education 
    Framework (CTEF), which emphasizes the importance of CT education across different 
    domains and disciplines. The CTEF is based on the following five components: CT concepts 
    and skills, CT teaching and learning, CT assessment, CT curriculum, and CT teacher 
    education. By focusing on these components, educators can ensure that CT education is 
    integrated into the broader curriculum and that students are exposed to CT concepts and 
    skills in various domains[3]. 
    Analysis and results.
     
    As mentioned in the related research, there are several effective 
    pedagogical strategies for teaching computational thinking (CT) to students in higher 
    education institutions. These include scaffolding, collaborative learning, and project-based 
    learning.
     
    Scaffolding involves breaking down complex problems into smaller, more manageable 
    parts and providing students with step-by-step instructions to help them develop their CT 
    skills. This strategy is effective because it provides students with the necessary support 
    and guidance to help them learn at their own pace. Collaborative learning, on the other 
    hand, allows students to work together and learn from each other. This strategy is effective 
    because it allows students to develop their problem-solving and communication skills, as 
    well as their ability to work in teams. 
    Project-based learning is also an effective strategy for teaching CT, as it allows students 
    to apply their CT skills to real-world problems. This strategy involves providing students 
    with a project that requires them to use their CT skills to solve a problem or develop a 
    solution. By engaging in project-based learning, students can develop their CT skills in a 
    meaningful and engaging way, as well as develop their ability to work independently and 
    manage complex projects. 
    In terms of the theoretical foundations of teaching CT, there are several models and 
    frameworks that can be used. For example, the Computational Thinking Framework by 
    Wing (2006) outlines the key components of CT, including algorithms, data structures, and 
    abstraction. This framework can be used to design CT curricula and to ensure that students 
    are exposed to CT concepts and skills in various domains[4]. 
    The related research also highlights some challenges to teaching CT, such as the need for 
    faculty development and the lack of standardized assessments for CT skills. To overcome 
    these challenges, higher education institutions may need to invest in faculty development 
    programs that provide educators with the necessary knowledge and skills to teach CT 
    effectively. Institutions may also need to develop standardized assessments for CT skills to 
    ensure that students are acquiring the necessary skills and knowledge. 
    The analysis and results suggest that teaching CT to students in higher education 
    institutions requires a sound theoretical foundation and effective pedagogical strategies. By 
    incorporating scaffolding, collaborative learning, and project-based learning into CT 
    instruction, educators can help students develop their CT skills in a structured and 
    engaging manner, preparing them for success in the digital age. However, there are also 
    challenges to teaching CT that must be addressed to ensure the effective integration of CT 
    education into the higher education curriculum. 

    Download 15,84 Mb.
    1   ...   469   470   471   472   473   474   475   476   ...   551




    Download 15,84 Mb.
    Pdf ko'rish

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Qarshi davlat universiteti international scientific and practical conference on algorithms and current problems of programming

    Download 15,84 Mb.
    Pdf ko'rish